Notes: **DILATIONS**

<u>Content Objective:</u> I will be able to apply a scale factor to a preimage to create an enlargement or reduction on a coordinate plane.

TERM .	DESCRIPTION ****	EXAMPLE
Dilation	A transformation that produces a similar figure by either enlarging or reducing the original figure by a scale factor, k .	A B C Z C Center of dilation x
	A fixed point about which the preimage is enlarged or reduced,	Usually the origin, (0,0)
Scalar	A number, represented by the variable k , used as a multiplier in scaling. The ratio of the image to the preimage.	<u>IMAGE</u> PREIMAGE
enlargement	A dilation with a scale factor greater than 1; the image is larger than the preimage.	k > 1
reduction	A dilation with a scale factor greater than 0 but less than 1; the image is smaller than the preimage.	0 < k < 1
·	When the scale factor of 1 is applied the preimage and the image are the same shape and the same size.	k = 1

COORDINATE RULES FOR DILATIONS

When a point P(a, b) is dilated by a scale factor k, then the following rules apply to the coordinates:

 $P(a, b) \rightarrow P'(ka, kb)$

Use the given scale factor and center to dilate the figures and state the new coordinates. Graph the image.

EXAMPLE 1

S'(_____, ____)

T'(_____,___)

R'(_____, ____)

Scale Factor: 1/2; Center: (0,0)

T(-7, 8) T(-3,5, 4)

(2) The "preimage" is DSTR. After the dilation (which was a reduction) the "image" is DSTR

(1) Find & of each

Coordinate.

R(-5, 3) \times original figure: $\triangle STR$ New figure: $\triangle ST'R'$ R'(-2.5, 1.5) $K = \frac{1}{2}$; reduction

EXAMPLE 2:

1) Find 3 times

M'(_____, _____)

N'(____, ___)

O'(____, ____)

Scale Factor: 3 : Center: Origin

each coordinate

2) The "pre image"

IS DMNO. The

"image" is DM'N'O,"

which is an
enlargement.

*original figure: ΔmNo New figure: Δm'N'0' K = 3; enlargement